
Recommending a Starting Point for a Programming Task:
An Initial Investigation

C. Albert Thompson
Department of Computer Science

University of British Columbia, Canada
leetcat@cs.ubc.ca

Gail C. Murphy
Department of Computer Science

University of British Columbia, Canada
murphy@cs.ubc.ca

ABSTRACT
When starting a new task, a software developer must typ-
ically find one or more starting points amongst many re-
sources (e.g., source code and other files) forming the soft-
ware system. In this paper, we consider how we might rec-
ommend one resource as an initial starting point, saving the
developer the effort of having to search or use other means
to find the point. Using data from the open source Eclipse
Mylyn project, we investigate whether resources considered
and changed for other tasks may be used to recommend a
starting point for a current task.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments;
K.6.3 [Software Management]: Software development

General Terms
Algorithms

Keywords
program history, repository mining, task similarity

1. INTRODUCTION
Performing a task often requires consulting or changing

more than one resource (e.g., source file) [13]. For many
tasks, several resources must be located, considered and
sometimes changed. Finding the resources necessary to rea-
son about and change can be time consuming [5]. Ideally,
a recommender could suggest all of the resources needed to
complete a task so that the software developer can focus
their attention on understanding those resources and chang-
ing them correctly to complete the task. In this paper, we
consider a first step towards this ideal goal by investigating
whether it is possible to recommend a resource as potential
starting point to the developer working on the task.

We consider whether it is possible to construct a recom-
mender that uses the similarity of task descriptions and the
overlap of considered and changed resources associated with
the similar tasks as the basis for recommending a potential
starting resource. To test this hypothesis, we used data from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RSSE ’14, June 3, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2845-6/14/06 ...$10.00.

the Eclipse Mylyn1 open source project that includes both
resources considered and resources changed per task within
its repositories. We found that a simple approach resulted in
a precision of 0.21 for recommending a single starting point.
Our initial results are encouraging but also indicate the need
for substantial improvement before a useful technique can be
provided.

We begin by comparing our approach to existing work
(Section 2). We then consider whether there is sufficient
overlap in the data in the repositories of Eclipse Mylyn to
make recommendations possible (Section 3) and report on
the results of applying one recommendation algorithm to
this problem (Section 4). We conclude with a discussion of a
few of the many open issues (Section 5) before summarizing
the results (Section 6).

2. RELATED WORK
Finding starting points for a task is similar to several other

problems that have been tackled in software engineering re-
search, including determining features (e.g., [2, 14, 1]), lo-
cating concepts or aspects (e.g., [7, 3, 11]), and finding
the next code to change as part of a task (e.g., [16, 8, 15]),
amongst others. The approaches taken to these problems
typically use one of four different approaches: dynamic anal-
ysis, static analysis, textual analysis, or data mining. The
approach we take in this paper is most similar to those used
in textual analysis and data mining.

Empirical studies have shown that developers typically
attempt to find starting points using search terms related
to the task about to be performed (e.g., [5]). Various tex-
tual analysis approaches have been taken to help streamline
this search process. For example, Marcus and colleagues
retrieve concepts from a corpus of externally defined con-
cepts and enable developers to use that as a base to find
information relevant to those concepts in the code of in-
terest [7]. As another example, Topic XP extracts topics
related to resources and uses those extracted topics to rec-
ommend other similarly related resources [11]. While these
style of approaches help streamline searching by providing
a concept-based search, they still require the developer to
formulate a search. We are interested in streamlining this
further by providing recommended resources without requir-
ing a developer to formulate a query.

The approach we consider in this paper is based on data
mining. A number of existing tools take such an approach.
An early example is Hipikat which brought information from
multiple repositories into a central schema, allowing recom-
mendations to be made of such information as which change

1eclipse.org/mylyn, verified 31/01/14.

eclipse.org/mylyn

Figure 1: The relationship between objects we use
to create our algorithms

done in the past and which files changed in the past are sim-
ilar to a current change [1]. In this use, Hipikat could pro-
vide a recommendation of starting points associated with the
most similar task done in the past. We hope to improve the
accuracy of such a recommendation by considering how mul-
tiple past tasks were completed. Other works have consid-
ered how to recommend to a developer the next steps to take
in a task. For example, Zimmermann and colleagues mined
version control information to recommend other places in
the code to edit based on how changes in the past touching
similar code were completed [16]. The approach we consider
in this paper attempts to take the first step in this process
by providing the first resource or file to consider.

3. ASSESSING THE DATA
To be able to make a helpful starting point recommenda-

tion, we need to determine if the resources considered and
changed as part of tasks have any overlap. If there is no
overlap, the approach of using how other tasks have been
completed is not likely to be useful. If there is overlap, it is
worthwhile to investigate algorithms based on this data.

The data we assess is drawn from the repositories associ-
ated with the Eclipse Mylyn open source project. When a
new feature is worked on or a bug is solved, it is the custom
in this project that task contexts [4] representing the work
performed on the task are attached to the issue describing
the feature or bug. A task context includes all resources
selected or edited as part of working on the task weighted
by the degree to which they were interesting—worked on
frequently or recently—with respect to the task. More than
one task context may be associated with a task if work has
proceeded at different times. The data we consider includes
the task contexts for issues as well as commits associated
with the issue representing the resources actually changed
as part of the work on the task.

Figure 1 depicts the data and its relationships available
from the Mylyn repositories. From Mylyn’s Bugzilla repos-
itory, which records tasks, we extracted 9,484 tasks (box 1
from figure 1). Each task has zero or more task context
attached; we extracted a total of 3,902 task context (box 2
from figure 1) from the attached resources to each task in
the Mylyn’s Bugzilla repository. We used the task id that
was added to each git commit message and used pattern
matching to connect the commit to the task id to get a total
of 9,982 commits matched to a task id (box 3 from figure
1). We also extracted 45,824 resources from both matched
git commits and contexts (box 4 from figure 1).

We would expect that the programming elements recorded
as part of a task context are a superset of the programming
elements recorded as part of a commit since presumably a

programmer would need to touch an element before it is
committed. We found that even though task contexts are
supposed to keep track of all resources touched or changed
there were still resources committed that were not in associ-
ated task context. On average 83% all committed resources
were also in the task context. The lack of capture of all
resources by task contexts means one of the following: My-
lyn was not used for parts of a task, resources are changed
outside of the scope of Mylyn, or resources are changed au-
tomatically. Thus we cannot solely rely on using task con-
text to make recommendations because other resources may
be necessary to complete a task and we should also include
commits.

To assess the usefulness of this data for starting point rec-
ommendations, we also needed a way to determine similarity
between task (or issue) descriptions. We use the standard
information retrieval approach of using TD-IDF [10] values
for each task. We computed TD-IDF for each task using the
title, description, and comments for that task. We then de-
termined the similarity between tasks using the cosine sim-
ilarity of the TF-IDF values (e.g., [9, 6]). We formed a test
set of tasks consisting of 4206 tasks from the Mylyn task
repository that each have at least one attached commit or
task context. Our test set of tasks had on average 1.1 task
contexts and 2.8 commits.

For each task in the test set, we form the largest possible
set of resources considered or changed as part of work on that
task consisting of all resources related to the task , whether
the code was named in a task context, or in a commit. We
repeat this same process for each task to form an oracle for
the resources associated for every task.

To assess the data, for each file in the test set of 4206
tasks, we compute the intersection of the resources in the
oracle with a union of the total possible resources that were
considered or changed in the top 10 tasks using the cosine
similarity approach to the task being processed. We found
an average overlap of 47% (± 35%) between the oracle for a
task and the possible set of data from which to recommend.
This overlap lends evidence that there is similarity between
work performed on similar tasks making a recommendation
of a starting point possible.

4. ALGORITHM
The algorithm that we investigate to find a starting point

recommends a resource by finding the intersecting resources
of similar tasks. We use cosine similarity to find and order
ten tasks (T1 . . . T10) that are most similar to the task for
which we want to find a starting point (T0). We then com-
pute the intersection of all resources between the two top
ranked similar tasks (e.g., T1 and T2). If there are one or
more common resource we return one random resource. If
there are no resources in common, the algorithm proceeds by
comparing the resources of T1 and T2, selecting a common
resource to return if one exists. The algorithm continues in
this manner until a resource is found to recommend.

Applying this algorithm to the 4206 tasks for Mylyn that
have at least one context or commit, we return one resource
for each task with a precision of 0.21. We focus on precision
because we want to see if our one recommendation is correct;
recall is not of interest to our problem at this time.

The algorithm performs better when the task for which
the recommendation is being given (T0 above) has more
than 100 files in the task contexts and commits associated

with the task. In the 424 tasks in this category, the pre-
cision rises to 0.55. This rise in precision is not surprising
given the large set of potential recommendations to make
correctly. The algorithm performs worse when there is only
one resource associated with the task of interest. In these
cases, the algorithm has a precision of 0.08. There were 409
cases in this category from our test set of tasks.

5. DISCUSSION
The algorithm we investigate in this paper is preliminary.

Many open questions remain.

Order of tasks
Our testing of the algorithm does not consider the sequence
in which tasks are performed. As a result, in the precision
number reported, resources may have been recommended
based on tasks completed after the task of interest. This
choice increases the corpus of tasks which we test and may
inflate precision. A realistic recommender must consider the
sequence in which tasks are performed.

What is a starting point?
Our definition of a starting point in this paper is a resource
that was considered or changed as part of a task. It may
be that a resource we are recommending is not a suitable
starting point as it may be difficult from that resource to
understand why it is being recommended or to find relevant
code from that point. It may also be a resource that was a
red herring for the task. Empirical study is likely necessary
to understand what developers consider reasonable starting
points. One possibility to better assess starting points are
whether there is overlap in the text of the task description
with the names and comments in the resource as developers
often use search to find starting points. Another possibility
is that a starting point should be closely related, perhaps
structurally or textually, to one of the resources changed as
part of the task completion.

Other approaches
Moving forward we want to look at different approaches to
recommending a starting point. Another way we could rec-
ommend is to extract features from the comments in each
task in a repository using natural language processing and
create a database of features. Similar work is done for clas-
sifying action items in emails [12]. Then based on an new
task we can extract features from the description and use the
database and retrieve similar features to use to recommend
resources.

Another possibility approach to building a starting point
recommender is to create an algorithm using machine learn-
ing to cluster tasks based on the resources they change.
From the cluster information, an algorithm can infer what
resources are necessary to complete a type of task. A recom-
mender can then compare a new task to existing clusters to
make recommendations based on the resources in the clus-
tered tasks.

6. SUMMARY
This paper provides evidence that it may be possible to

build a recommender to help a software developer know on
which resource (e.g., source code file) work might start on,
for a new task to be performed. An assessment of the Eclipse
Mylyn open source project data showed that there is sub-
stantial overlap in the resources considered and changed as

part of similar tasks when task similarity is based on cosine
similarity of TF-IDF scores for the tasks. Preliminary anal-
ysis of a straightforward algorithm based on recommending
a resource used in tasks similar to the task of interest can
return a starting point with a precision of 0.21.

ACKNOWLEDGMENTS
This work was funded in part by IBM and in part by NSERC
through the NECSIS project.

7. REFERENCES
[1] D. Cubranic, G. C. Murphy, J. Singer, and K. S.

Booth. Hipikat: A project memory for software
development. TSE’05, 31(6):446–465.

[2] T. Eisenbarth, R. Koschke, and D. Simon. Locating
features in source code. TSE’03, 29(3):210–224.

[3] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza,
C. Lucena, and A. von Staa. Modularizing design
patterns with aspects: a quantitative study. In
Transactions on Aspect-Oriented Software
Development I, pages 36–74. Springer, 2006.

[4] M. Kersten and G. C. Murphy. Using task context to
improve programmer productivity. In Proceedings of
the 14th ACM SIGSOFT FSE’06, pages 1–11. ACM.

[5] A. J. Ko, H. H. Aung, and B. A. Myers. Eliciting
design requirements for maintenance-oriented ides: a
detailed study of corrective and perfective
maintenance tasks. In ICSE’05, pages 126–135. IEEE.

[6] G. Kumaran and J. Allan. Text classification and
named entities for new event detection. In SIGIR’04,
pages 297–304. ACM.

[7] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic.
An information retrieval approach to concept location
in source code. In Proceedings. 11th WCRE’04, pages
214–223. IEEE, 2004.

[8] M. P. Robillard, W. Coelho, and G. C. Murphy. How
effective developers investigate source code: An
exploratory study. TSE’04, 30(12):889–903, 2004.

[9] M. Sahami and T. D. Heilman. A web-based kernel
function for measuring the similarity of short text
snippets. In WWW 06, pages 377–386. ACM.

[10] G. Salton and M. J. McGill. Introduction to modern
information retrieval. 1986.

[11] T. Savage, B. Dit, M. Gethers, and D. Poshyvanyk.
Topic XP : Exploring topics in source code using latent
dirichlet allocation. In ICSM’10, pages 1–6. IEEE.

[12] S. Scerri, G. Gossen, B. Davis, and S. Handschuh.
Classifying action items for semantic email. In
LREC’10.

[13] N. Thomas and G. Murphy. How effective is
modularization? Making Software: What Really
Works, and Why We Believe It, page 373, 2010.

[14] N. Wilde and M. C. Scully. Software reconnaissance:
mapping program features to code. Journal of
Software Maintenance: Research and Practice,
7(1):49–62, 1995.

[15] A. T. Ying, G. C. Murphy, R. Ng, and M. C.
Chu-Carroll. Predicting source code changes by
mining change history. TSE’04, 30(9):574–586.

[16] T. Zimmermann, A. Zeller, P. Weissgerber, and
S. Diehl. Mining version histories to guide software
changes. TSE’05, 31(6):429–445.

	INTRODUCTION
	RELATED WORK
	ASSESSING THE DATA
	ALGORITHM
	DISCUSSION
	Summary
	References

