
How Software Developers Use Work Breakdown
Relationships in Issue Repositories

C. Albert Thompson, Gail C. Murphy and
Marc Palyart

University of British Columbia
{leetcat,murphy,mpalyart}@cs.ubc.ca

Marko Gašparič
Free University of Bozen-Bolzano

marko.gasparic@stud-inf.unibz.it

ABSTRACT
Software developers use issues as a means to describe a range
of activities to be undertaken on a software system, including
features to be added and defects that require fixing. When
creating issues, software developers expend manual effort
to specify relationships between issues, such as one issue
blocking another or one issue being a sub-task of another.
In particular, developers use a variety of relationships to ex-
press how work is to be broken down on a project. To better
understand how software developers use work breakdown re-
lationships between issues, we manually coded a sample of
work breakdown relationships from three open source sys-
tems. We report on our findings and describe how the recog-
nition of work breakdown relationships opens up new ways
to improve software development techniques.

1. INTRODUCTION
For many software development projects, issue reposito-

ries hold key information defining what the system under
development will do, who will work on different parts of the
system, what defects occur as the system is being built, and
more. When defining issues, software developers often ex-
pend manual effort to record relationships between issues,
capturing such information as how work is to be broken
down, how functionality in the system relates and which
defects are similar to each other. Figure 1 shows the rela-
tionships defined for the GATEWAY-3941 issue from the open
source Connect project [2].These relationships describe on
which other issues GATEWAY-3941 depends, which issues de-
pend on it, which issues it supports and which issues describe
sub-tasks to complete as part of the work associated with
GATEWAY-3941.

In the issue repository systems of which we are aware,
there is little consistency as to the kinds and names of rela-
tionships supported. As one example, in a Bugzilla reposi-
tory[1], relationships are typically entered as depends-on or
blocks. The semantics of these relationships can vary be-
tween projects using Bugzilla. As another example, in a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR’16, May 14-15, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4186-8/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2901739.2901779

Figure 1: Example issue relationships

JIRA repository [4], users can define a variety of fields to
hold relationships. Many JIRA systems are configured with
four default relationships: relates-to, duplicates, blocks and
clones. When JIRA is used for a project following an ag-
ile project management style, it is also common to see such
relationships as is-supported-by and subtasks.

Table 1 shows the many kinds and instances of relation-
ships developers specified largely manually in the issue repos-
itories for three open source systems1: Mylyn [5], Connect
[2] and HBase [3]. The data in Table 1 shows that thou-
sands of relationship instances were specified for each sys-
tem. When we examined the kinds of relationships in these
repositories—by asking project developers on the forums
they use and by analyzing documentation—we learned that
the most frequently occurring relationships describe work
breakdowns,2 causing us to ask“how are software developers
using work break down relationships in issue repositories”?

To investigate this question, we performed a qualitative
study of a sample of work breakdown relationships from the

1The data reported is from April 30, 2015.
2 In Mylyn, 59% of the relationships are depends-on, which
represent work breakdowns. In HBase sub-tasks are work
breakdowns representing 30% of all relationships specified.
In Connect, 79% of relationships are work breakdowns via
the supported-by and subtask relationships.

http://dx.doi.org/10.1145/2901739.2901779

Table 1: Relationships instances from repositories
using Bugzilla(*) or Jira(†)

Mylyn * Connect † HBase †

Blocked 299

Breaks 47

Clone 32

Contains 12

Depends-on 2174 205 286

Duplicates 1520 43 159

Incorporates 208

Part-of-epic 559

Requires 189

Relates-to 1901

Subtask 1643 1368

Supercedes 31

Supported-by 1361

Total 3694 3811 4532

three aforementioned repositories. We had three researchers
(authors of this paper) code the how these relationships were
being used based on an analysis of the titles of selected is-
sues. Through this coding, we determined six codes that
describe the kinds of work breakdown relationships, rang-
ing from describing particular cases in which a more gen-
eral problem must be solved to describing how functionality
should be verified.

A better understanding of how relationships are used in
issue repositories and an ability to recognize different uses
of relationships provides opportunities to create new, and
improve existing, software development tools and methods.
For instance, a new tool might predict missing tasks based
on patterns in the issue repository. Or existing approaches
might be improved, such as approaches to associate commits
with issues; this kind of data is used to analyze and predict
software development, such as change-inducing fixes [16].
Bird and colleagues showed that when such software engi-
neering data is incomplete, bias can occur [9]. We discuss
these possibilities in Section 4.

We begin by describing earlier efforts in characterizing is-
sue repositories (Section 2). We then describe the qualitative
study (Section 3) and discuss how better understanding of
relationships can improve software development approaches
(Section 4). We summarize the paper (Section 5).

2. RELATED WORK
A number of researchers have investigated how issues are

used in development.
Mockus and colleagues characterize aspects of problem re-

ports (i.e., issues), such as time to resolve a problem, as part
of a characterization of open source development [13]. An-
vik and colleagues describe how bug triage and duplicate
bugs occur in source repositories [6]. Ko and colleagues an-
alyzed titles of individual issues to determine such aspects
as the degree to which issues refer to particular parts of
a system and how much regularity there is between issue
titles [12]. Bettenburg and colleagues consider what addi-

tional information should be included in an issue to assist a
developer [8]. Banerjee and colleagues examined Mozilla and
Eclipse repositories, finding that the maturity of a reporter
reduces how often insignificant, poor quality, and duplicate
bugs are detected [7]. Jankovic and colleagues find issues
and commits can be used to reconstruct software processes;
they define issues as parallel or sequential with the exis-
tence or nonexistence of a “block” relationship link between
issues [11]. The work we present adds to these earlier ef-
forts by identifying the prevalence and use of relationships
between issues that are manually specified by developers.

3. QUALITATIVE STUDY
Our qualitative study involved sampling pairs of related

issues from the Mylyn, Connect and HBase issue repositories
and performing an open coding of the sampled pairs.

3.1 Coding Process
We began by selecting pairs of issues related in work break-

down relationships from the Mylyn and Connect repositories.
We chose these two systems to start our open coding pro-
cess [17] because we had knowledge that they each follow an
agile development process and thus might share commonal-
ities in how they use relationships in the issue repository.

Three coders (the first, third and fourth authors of the
paper) read the titles of each issue in a selected pair and
discussed the meaning of the relationship between the pair.
If the meaning had not yet been seen, a code was developed
to recognize and describe how the issues are related and was
recorded in a codebook.3 In the first iteration, 40 issue pairs
from Mylyn and 60 issue pairs from Connect were randomly
selected and coded.

After coding the first 100 issue pairs, we randomly selected
a different set of 60 issue pairs from Mylyn and 90 issue pairs
from Connect. Each of the three authors involved in the
original iteration then coded 2 sets of 20 issue pairs (for a
total of 40) from Mylyn and 2 sets of 30 issue pairs (for a
total of 60) from Connect. In this way, each set of 20 or 30
issue pairs respectively was coded by two authors. The pairs
of coders compared results and tried to reach a consensus
on which code applies, updating the codes as necessary.

To ensure the updated codes were appropriately applied,
all three coders then re-coded all previously coded pairs. At
this point no new codes were found.

To determine if the codebook was sufficiently general to
cover another system for which it had not been developed,
two coders (the first and third authors of this paper) coded
50 issue pairs from the HBase repository, which was chosen as
having different development characteristics from the other
two projects. Based on this coding, some guideline refine-
ments to clarify code selection were made to the codebook.
The two coders then coded an additional 30 issue pairs from
HBase to check if saturation had been reached. To assess the
inter-coder reliability, we computed Cohen’s kappa on the fi-
nal 30 issue pairs coded; the coders achieved a 0.56 kappa
value. As will be explained in the next section, some codes
are related through a hierarchy; coders sometimes had dif-
ferences in the level of code in the hierarchy assigned. If all
sub-codes are collapsed to the super-code in the hierarchy,
the kappa scores rises to 0.88.

3See www.cs.ubc.ca/labs/spl/projects/issueRelationships/

www.cs.ubc.ca/labs/spl/projects/issueRelationships/

Figure 2: Codes developed through open coding

3.2 Codes
Six codes were identified from the coding process to more

precisely describe the meaning of issues related through a
work breakdown relationship: specification refinement, in-
stance of parent, expectation, problem, check validity, and
reverse specification. Pairs for which the meaning of the re-
lationship could not be determined were coded as unknown.
As Figure 2 shows, three of the codes are a specialization of
the specification refinement code. Any pair of issues coded
was assigned only one code from this set.

We describe the guidelines for each code in turn. For
clarity in these guidelines, we refer to the issue that is the
source of the relationship as the parent and the issue that is
the target of the relationship as the child.

Specification refinement.
This code applies when a child issue describes one step

of the work breakdown for the parent issue. The following
example from Mylyn illustrates this code as the child issue
specifies actions to take towards improving tooltip presen-
tation.

Parent 205861: Improve tooltip presentation and content

Child 238292: Show reporter and beginning of description
text on new issue tooltips.

Instance of parent.
This code applies when each child issue is a particular case

in which the work described by the parent issue should be
performed. The following example from Connect illustrates
a child issue that specifies work from the parent is to occur
on Windows machines, the same work can be done also on
other types of machines.

Parent GATEWAY-1664: Create new VMs for final release
installation testing. Needed by Friday 3/9

Child GATEWAY-1667: 4 Windows machines

Check validity.
This code applies when a child issue describes a verifi-

cation activity for a parent issue. For instance, in HBase,
the child issue describes adding tests to show the feature,
described by the parent issue, works correctly.

Parent HBASE-10070: HBase read high-availability using
timeline-consistent region replicas git

Child HBASE-10791: Add integration test to demonstrate
performance improvement

Expectation.
This code applies when the child issue describes constraints

or suggestions on how a parent issue can be fulfilled. The
child issue in these cases often uses words like should, must,
need, ensure, and improve. The following example from My-

lyn shows how the child issue constraints the parent issue
requirements.

Parent 158921: Improve the issue editor usability and in-
formation density

Child 212953: Depends on field in issue editor should fill
available horizontal space

Problem.
This code applies when the child issue describes a problem

that occurs in a parent issue. For instance, from Connect,
the parent issue describes performing transaction logging
and the child issue describes a particular part of the system
requiring attention.

Parent GATEWAY-2151: Transaction Logging

Child GATEWAY-2782: non-unique messageid causes trans-
action not to be logged in transaction repo

Reverse specification.
This code applies when a parent issue describes one step

of the work breakdown for the child issue. In other words,
it is the reverse of specification refinement. For instance,
from Connect the parent issue is a specific case of the child
issue to investigate tests for concurrent messages.

Parent CONN-910: Execute concurrent tests from 3.3 gate-
way to 4.3 to ensure turning off of replay attacks fixes
the issue

Child CONN-859: Investigate and research issue when con-
current messages are sent from connect 3.x gateway to
connect 4.2 gateway

Unknown.
When none of the six codes just described apply to an

issue pair, or when both reverse specification and specifica-
tion refinement seem applicable, we consider the relation-
ship meaning for an pair to be unknown. For instance, in
the following Connect example, the parent issue describes
an action to perform but the child issue is a noun phrase.

Parent CONN-1094: Create static screens for Direct config-
uration in Administrative GUI

Child CONN-1105: Trust Bundles

3.3 Summary
Table 2 shows the results of coding 330 issue pairs across

the three repositories. The most prevalent code across all
repositories was specification refinement. Interestingly,
the more specialized version, check validity, occurs much
more often in Connect than in the other repositories; per-
haps the other repositories do not explicitly record their
quality assurance related tasks. Mylyn contains more issue
pairs describing problems than the other repositories; this
may be due to the high number of issue reporters who are not
contributing developers. The expectation code occurs more
frequently in HBase, perhaps because developers perform

Table 2: Codes occurring in each repository

Mylyn Connect HBase

Code % # % # % #

Spec. Refinement 48.0% 48 42.0% 66 47.5% 38

Check Validity 4.0% 4 14.0% 21 5.0% 4

Instance of Parent 5.0% 5 21.3% 32 7.5% 6

Expectation 14.0% 14 3.3% 5 21.3% 17

Problem 22.0% 22 6.7% 10 11.3% 9

Reverse Spec. 3.0% 3 2.7% 4 0.0% 0

Unknown 3.0% 3 7.3 % 11 6.3% 5

No consensus 1.0% 1 2.7% 4 1.3% 1

Total 100 150 80

more analysis of work breakdowns before specifying child
tasks. The instance of parent occurs more frequently in
Connect, suggesting that the developers more frequently re-
fer to structural parts of the system when specifying work
breakdown issues.

3.4 Threats to Validity
The codes may be biased by the knowledge and experience

of the coders. The use of three coders helps minimize this
bias. By separating into pairs to code after the development
of the initial code book, we helped mitigate the persuasive
affect of any one coder.

With each repository we coded, we clarified the code book.
More refinements may be necessary if applied to other repos-
itories, limiting the external validity of our results. Coding
only the title of an issue also limits our results. More clarity
on how a relationship is used might have been gained by
using more information from the issue, such as comments
about the work actually undertaken as part of the issue.

4. DISCUSSION
An understanding of how relationships are used may help

information the development of new tools and may help im-
prove the interlinking of commit and issue data.

4.1 Improving Software Development
The reliance on issue repositories for recording work on the

system provides opportunities for tools to help ensure pro-
cess is being followed. For example, tools may be created to
analyze issues and learn the development process being used;
this knowledge can then be used to automatically suggest
tasks that may be missing. For example, GATEWAY-29034

in the Connect system, with six related work breakdown is-
sues, was assumed complete, but developers had forgotten
to specify and implement the work on a particular part of
the system. Much later, 17 days after GATEWAY-2903 was
thought to be completed, a new issue GATEWAY-31835 was
added to the system that explicitly referred to work as be-
ing missed in the issue GATEWAY-2903. This missing issue

4https://connectopensource.atlassian.net/browse/
GATEWAY-2903, verified 29/01/16
5https://connectopensource.atlassian.net/browse/
GATEWAY-3183, verified 29/01/16

might have been predicted using process learned from issue
relationships, allowing work to progress in a more timely
and complete manner.

Analysis of the work described by issues and differences
found between related issues might also help identify if there
are any patterns that lead to certain kinds of bugs reported
into the system. For example, do bugs correlate with par-
ticular semantic codes associated with the issues? Does this
provide new opportunities to enhance bug prediction tech-
niques (e.g., [14, 18, 10])?

4.2 Improving Software Engineering Data
Relationships between issues might be used to improve

interlinking of commit and issue data to enable traceability
between features and defects and the code that implements
the feature or fixes the defect. Although tool support exists
to help automate the collection of this data, the data is still
often incomplete. Schermann and colleagues describe two
scenarios derived in which missing links occur: 1) loners,
which are single commits that lack a link to an issue and 2)
phantoms, which are unlinked commits in a series of com-
mits for which at least one commit in the series is linked [15].
The heuristics that Schermann and colleagues introduce to
reduce the loners and phantoms in a system do not con-
sider how issues in the issue repository are related. As a
result, phantoms, in particular, may be incorrectly linked to
an issue describing the overall work to be performed rather
than an issue that describes the specific work undertaken
by a phantom commit. Consider an example that Scher-
mann and colleagues describe as a phantom: CAMEL-7354

from the Apache Camel system6 and the unlinked commit
14cd8d6fb7. CAMEL-7354 has seven sub-tasks; an inspec-
tion shows that commit 14cd8d6fb should be linked to one
of the sub-tasks, CAMEL-76758. An ability to recognize and
automatically tag the kind of relationship between CAMEL-

7354 and its sub-task CAMEL-7675 could improve interlinking
heuristics for associating commits with the appropriate is-
sue.

5. SUMMARY
Developers often expend manual effort to specify how is-

sues in an issue repository relate, especially to express how
work is to be broken down and performed on the system.
To investigate what kinds of work breakdowns are being ex-
pressed, we performed an open coding of a sample of 330
related issue pairs from the issue repositories of three open
source systems: Mylyn, Connect and HBase. Our open cod-
ing progress resulted in six codes that describe a variety of
kinds of work breakdowns, including cases where the work
breakdowns express steps of verification and express con-
straints on work to be performed.

This study is the first to provide insight into the richness
of information embedded in relationships in issue reposito-
ries. This information offers new opportunities to create new
software engineering tools, such as to detect when necessary
work may be missing and to improve interlinking of commit
and issue data.
6https://issues.apache.org/jira/browse/CAMEL-7354, veri-
fied 29/01/16
7https://git1-us-west.apache.org/repos/asf?p=camel.git;
a=commit;h=14cd8d6b
8https://issues.apache.org/jira/browse/CAMEL-7675, veri-
fied 29/01/16

https://connectopensource.atlassian.net/browse/GATEWAY-2903
https://connectopensource.atlassian.net/browse/GATEWAY-2903
https://connectopensource.atlassian.net/browse/GATEWAY-3183
https://connectopensource.atlassian.net/browse/GATEWAY-3183
https://issues.apache.org/jira/browse/CAMEL-7354
https://git1-us-west.apache.org/repos/asf?p=camel.git;a=commit;h=14cd8d6b
https://git1-us-west.apache.org/repos/asf?p=camel.git;a=commit;h=14cd8d6b
https://issues.apache.org/jira/browse/CAMEL-7675

6. REFERENCES
[1] Bugzilla. www.bugzilla.org. Accessed: 27/1/2016.

[2] Connect, project supporting health information
exchange. www.connectopensource.org. Accessed:
27/1/2016.

[3] HBase. hbase.apache.org. Accessed: 27/1/2016.

[4] JIRA. www.atlassian.com/software/jira. Accessed:
27/1/2016.

[5] Mylyn. www.eclipse.org/mylyn. Accessed: 27/1/2016.

[6] J. Anvik, L. Hiew, and G. C. Murphy. Coping with an
open bug repository. In OOPSLA Workshop on
Eclipse Technology eXchange, pages 35–39, 2005.

[7] S. Banerjee, J. Helmick, Z. Syed, and B. Cukic.
Eclipse vs. mozilla: A comparison of two large-scale
open source problem report repositories. In
International Symposium on High Assurance Systems
Engineering, pages 263–270, 2015.

[8] N. Bettenburg, S. Just, A. Schröter, C. Weiss,
R. Premraj, and T. Zimmermann. What makes a good
bug report? In The Joint Meeting of the European
Software Engineering Conference and Symposium on
The Foundations of Software Engineering, pages
308–318, 2008.

[9] C. Bird, A. Bachmann, E. Aune, J. Duffy,
A. Bernstein, V. Filkov, and P. Devanbu. Fair and
balanced? bias in bug-fix datasets. In The Joint
Meeting of the European Software Engineering
Conference and Symposium on The Foundations of
Software Engineering, 2009.

[10] A. E. Hassan. Predicting faults using the complexity
of code changes. In The International Conference on
Software Engineering, pages 78–88, 2009.

[11] M. Jankovic and M. Bajec. Comparison of software
repositories for their usability in software process
reconstruction. In The International Conference on
Research Challenges in Information Science, pages
298–308, 2015.

[12] A. J. Ko, B. A. Myers, and D. H. Chau. A linguistic
analysis of how people describe software problems. In
Visual Languages and Human-Centric Computing,
pages 127–134, 2006.

[13] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two
case studies of open source software development:
Apache and mozilla. Transactions on Software
Engineering and Methodology, 11(3):309–346, 2002.

[14] R. Moser, W. Pedrycz, and G. Succi. A comparative
analysis of the efficiency of change metrics and static
code attributes for defect prediction. In The
International Conference on Software Engineering,
pages 181–190, 2008.

[15] G. Schermann, M. Brandtner, S. Panichella,
P. Leitner, and H. Gall. Discovering loners and
phantoms in commit and issue data. In The
International Conference on Program Comprehension,
2015.

[16] J. Śliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? In The International Conference
on Mining Software Repositories, pages 1–5, 2005.

[17] A. Strauss and J. M. Corbin. Basics of qualitative
research: Grounded theory procedures and techniques.
Sage Publications, Inc, 1990.

[18] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and

B. Murphy. Cross-project defect prediction: a large
scale experiment on data vs. domain vs. process. In
The Joint Meeting of the European Software
Engineering Conference and Symposium on The
Foundations of Software Engineering, pages 91–100,
2009.

www.bugzilla.org
www.connectopensource.org
hbase.apache.org
www.atlassian.com/software/jira
www.eclipse.org/mylyn

