
Towards Generation of Software Development Tasks
C. Albert Thompson

Department of Computer Science
University of British Columbia, Vancouver, B.C. V6T 1Z4 Canada

Email: leetcat@cs.ubc.ca
Website: http://c.albert-thompson.com

Advisor: Gail Murphy

Abstract—The presence of well defined fine-grained sub-tasks
is important to the development process: having a fine-grained
task context has been shown to allow developers to more
efficiently resume work. However, determining how to break a
high level task down into sub-tasks is not always straightforward.
Sometimes developers lack experience, and at other times, the
task definition is not clear enough to afford confident decompo-
sition. In my research I intend to show that by using syntactic
mining of past task descriptions and their decomposition, I
can provide automatically derived sub-task suggestions to afford
more confident task decomposition by developers.

I. INTRODUCTION

A developer’s day typically involves working on a number
of different tasks [1], [2]. Descriptions for these tasks currently
come from the developers’ analysis of the task problem.
Larger sized tasks, such as user stories, are broken down by
developers into smaller sub-tasks. Sometimes these tasks and
sub-tasks are explicitly captured in a repository, such as an
issue repository. Other times, some or all of the tasks remain
implicit.

The efficiency and quality by which development occurs is
affected by the task breakdown and representation. Studies by
Mark et al. show that developers have troubles returning to a
task when they are interrupted [3]. Other studies by Mark finds
that multi-tasking introduces more stress into a developers
environment [2]. These effects impact the efficiency of the
development process. The efficiency can also be impacted by
inappropriate task breakdowns that might negatively impact
the parallelism of development. The quality of a system
can also be affected by missing appropriate tasks, such as
potentially missing testing tasks that should be performed.

My thesis is that the efficiency and quality of software
development can be improved through the automatic gener-
ation and recommendation of task breakdowns to developers
based on patterns learned from development tasks specified in
projects. To illustrate the basic idea, consider the following
user story (a task), CONN-998 in Table I, from the Connect
project 1 that is building open source software to support an
exchange of health information across organizations. Given
this task, I aim to recommend sub-tasks that break a task
down into specific work units. The existing sub-tasks for
CONN-998 provide an idea of the kinds of sub-tasks that

1http://www.connectopensource.org verified on November 2014

must be generated. CONN-1033 describes a sub-task to do
research before making an implementation, and CONN-1034,
on Table I, is more descriptive and describes what direct
configuration service the developer should implement. My aim
is to generate these sub-tasks with a focus on the generating
the first kind of sub-task that leverages patterns in the task for
Connect.

TABLE I
TASKS TAKEN FROM THE CONNECT ISSUE REPOSITORY

Task ID Task Title

CONN-998
As a CONNECT developer I want to create direct
configuration services which fit into the
CONNECT tech stack.

Sub-Tasks Titles

CONN-1033 As a CONNECT developer I want to implement
some Direct configuration web services.

CONN-1034

As a CONNECT developer, I want to implement
Spring/Hibernate Direct configuration services as part of
CONNECT so that I can change Direct config
settings through the Admin GUI.

The contributions of this research are anticipated to be:
• An approach to learn patterns about task structure and

contents from existing project task (issue) repositories.
• An approach to recommend sub-tasks based on learned

patterns.
• A tool that delivers sub-task recommendations effectively

to a developer.

II. RELATED WORK

The idea that steps could be generated to solve a problem
has been considered in the field of AI planning. In planning,
computers are given a goal and a set of rules that they can
follow and are asked to find a way to accomplish the goal using
AI algorithms such as Markov chains, or decision trees [4], [5].
The research revolves around ways to understand the similar
set of rules needed to accomplish a goal [6]. My research is in
that there is a goal, a task, but differs from planning in lacking
a predefined set of rules to determine how to archive a goal.

A number of approaches consider how to have a human
generate the sub-tasks to be worked on. In Soylent a writer can
create tasks to be preformed later, such as editing and proof



reading short texts while writing [7]. CrowdForge uses crowd
sourcing to help break down audio transcription or writing task
into smaller tasks [8]. In the domain of software engineering,
microtask programming semi-automatically decomposes a task
into microtasks [9]. The task generation happens when a
developer, while programming, inserts a comment containing
pseudo code, that is then detected and used to create a
microtask. All these approaches assist the developer in making
sub-tasks that have been explicitly identified by the developer.
This research attempts to determine and automatically generate
sub-task.

Work done by Bettenburg et al. informs task creators what
additional information should be included in a task to assist a
developer [10]. This encourages task creators to submit better
bug reports. This work focuses on improving a newly created
task, I can use the good task creation concepts described
in [10] when assisting in developers in task creation.

Scerri et al. and Mizoguchi et al. have both considered
identifying actions found in natural language [11], [12]. Re-
search by Scerri et al. automatically extracts action items from
emails using natural language [11]. They create a model of
classification using five grammatical, syntactical and linguistic
features of natural language to capture action-object-subject
tuples. Mizoguchi et al. describes the idea of a task ontology
which includes goals, verbs, nouns, adjectives, and verbs that
are constrained to object, calling them “constraint verbs” [12].
These results can be used as a basis for developing the
proposed approach for sub-task generation.

III. INITIAL ANALYSIS

To investigate whether there is promise in learning task
patterns in a project, I consider the following three questions:

1) Do there exist patterns in tasks regardless of the hierar-
chical or other relationships in tasks?

2) Are there patterns in hierarchical (parent-child) relations
of a task, between one parent and its children?

3) Can the hierarchical task patterns be categorized mean-
ingfully?

To investigate these questions I use two open source issue
repositories: The Connect and the Mylyn project2. I focus
in this paper on the results from Connect, reporting the
results from Mylyn, which were similar, in Table II without
discussion.

1. Are there patterns between tasks regardless of any hierar-
chical or other relationship?

Issue repositories contain a rich set information that can be
used to make informed recommendations of sub-tasks, such as
description, comments, task type, etc. In my analysis to date,
I have focused on the title of a task and its hierarchical rela-
tionship to other tasks. The regularity of task titles determined
by Ko et al. [13] is the reason I have focused on titles.

Mizoguchi et al. found that objects related to verbs are
important in the task ontology [12]. I use this approach

2http://eclipse.org/mylyn/ verified on November 2014

TABLE II
DATA RESULTS FROM BOTH CONNECT AND MYLYN PROJECTS

Connect Mylyn
Repository Stats

Tasks with hierarchical relation 1184 1503
Verb-noun instances 2736 3092
Distinct verb-noun instances 1831 2541
Distinct verbs 318 403
Distinct nouns 720 909

Rules
Verb-noun rules 723 100
Verb rules 361 422
Noun rules 458 370

Categories
Formulaic relationships 425 121
Feature→design relationships 359 664
Uncategorized relationships 400 718

to look for patterns in issue repositories. For each of the
considered issues repositories, I apply the Stanford language
parser3 to determine all the verb-noun instance pairs that exist
in each task title. 2736 verb-noun instances, of which 1831
are distinct, were found in Connect. This high percentage
of distinct verb-noun instances is not unexpected. It is not
likely a developer would repeat the same action on the same
programming artifact multiple times. Rather the developer
might repeat the same action, using the same verb, on different
programming artifacts.

A critical part of a task description is a verb, with the verbs
being applied to different nouns related to different parts of a
system. In Connect, there are 318 different verbs used, and
720 different nouns. I can leverage the similarity in verbs and
nouns in an approach to generate and recommend sub-tasks.

2. Are there patterns in parent-child relations of a task,
between one parent and its children?

It may be that finding patterns within task hierarchies may
be more likely to occur than generally across a issue repository.
To investigate this question, I used the SPMF data mining
mining library4 to do association rule mining to extract rules
from within hierarchies. The first data set used the verb-noun
instance to see what were the repeated actions on programming
artifacts taking place. The second data set and third data
sets were the verbs and the nouns separately analyzed using
association rule mining.

Association rule mining on the first data set (verb-nouns)
found 723 rules that in the Connect issue repository with
support of at least two for each rule. Here is an example
of one rule found: if a parent task contains the verb-noun,
“replace metro” then child task will have “use CXF” with a
support of 10 occurrences and a confidence of 11% see Table
III. I manually examined 30 random rules and found the sub-
tasks of each rule were nearly identical differing only in a few
words. The rules covered 425 hierarchical relationships out of
a total 1183 relationships in the Connect issue repository.

3http://nlp.stanford.edu/software/lex-parser.shtml verified November 2014
4http://www.philippe-fournier-viger.com/spmf/ verified November 2014



TABLE III
AN EXAMPLE FROM THE SYSTEM CATEGORY, WITH CHANGES

UNDERLINED

Task ID Task Title

GATEWAY-2302 Using Apache CXF and OpenSAML, I would
like to replace Metro in XDR

Sub-Tasks Titles

GATEWAY-2162 Using Apache CXF and OpenSAML, I would
like to replace Metro in XDR Client

GATEWAY-2303 Using Apache CXF and WSS4J, I would
like to replace Metro in XDR Server

Association rule mining found 361 rules with verbs and 458
rules with nouns with support of at least two. 30 rules from
both sets were manually examined, in each rule many of the
tasks in the hierarchical relationships covered a similar feature
and the sub-tasks described steps to implement the feature. The
rules I found covered 359 hierarchical relationships.

3. Can the hierarchical task patterns be categorized meaning-
fully?

I examined 30 rules from each data set to see if the rules
fall into different categories: three categories were determined.
The first category is a system category which had 425
relationships, where the hierarchical relations in the category
were very similar to each other, differing only to which part of
the system a sub-task pertains. Consider the example shown
in Table III. In this example only Client/Server was added and
WSS4J was change in the sub-tasks. The second category is
feature→design which had 359 relationship. This cate-
gory includes tasks were tasks that focused on implementation
of a feature and the sub-tasks outlined the steps in design.
An example is provided in Table IV. There was no obvious
categorization for the remaining 400 relationships; for now, I
have placed these in a miscellaneous category pending further
investigation.

To date, my focus has been on understanding patterns that
exist in issue repositories and on how those patterns might be
used for sub-task generation.

IV. RESEARCH PROGRESS

I intend to mine historical issue data to create an approach
to generate and recommend sub-tasks to developers. This
approach can use information in a task a developer is assigned
and the rules found in the project repository. Restricting
recommendations based on a category and type of task may
improve results. For example recommendations for feature
tasks may be possible, while recommendation for bug tasks
may not be possible. There may also be an opportunity to
learn rules between different project repositories.

Before I can make recommendations to developers more
analysis is needed on how patterns may be exploited and
abstracted to compose a sentence to describe recommended
tasks. To do this I will need enough project context to state

TABLE IV
AN EXAMPLE FROM THE FEATURE→DESIGN CATEGORY

Task ID Task Title

CONN-1065

As a CONNECT user I want the Admin GUI to
display which remote HCID’s the local gateway is
communicating with so that I can analyze
message traffic.

Sub-Tasks Titles

CONN-1025
As a CONNECT developer, I want to be able
to query event logs, to display information for
message tracking.

CONN-1027
As a CONNECT developer I would like a Admin
GUI page to display the remote gateways that the
local gateway is communicating with.

generated tasks in the lexicon of the project. I may also need to
put multiple verb-noun instances together to make something
useful for a developer.

Even if appropriate tasks can be generated, there are still
questions of how best to deliver recommendations to develop-
ers. Several approaches exist discussing ways to present infor-
mation to a developer in an responsive application: a multi-
layer user interface based on user expertise [14], an adaptive
interface changeable by the user [15], or an adaptive interface
automatically changed based on usage from a user [16].

V. EVALUATION METHODOLOGY

To evaluate recommendation of sub-tasks and tool devel-
oped as part of this research, there are 4 research questions to
be answered.

1) Is it possible to recommend tasks and sub-tasks using
patterns?

2) How can patterns be combined in a category to form
meaningful sub-task titles and descriptions?

3) Given a recommendation how can they be ranked for a
developer?

4) What ways can recommendations be effectively pre-
sented to a developer?

Section III and IV described how the approach and mech-
anism might be developed. Assuming I am able to develop
an approach and delivery a mechanism, I will also need to
evaluate how the approach impacts the quality and efficiency
of a development process.

To look at effectiveness, I will first determine over a number
of project how many existing explicit sub-tasks can be found
using our approach. I will also ask developers that work on
those project to assess sub-tasks not found in repositories.
Second, I will ask developers to use the tool and will compare
use if more sub-tasks are being explicitly captures.

To look at quality, a longitudinal format study can be used.
I will give the tool to developers to use for a month. I will
then analyze the sub-tasks in the repository to see if more
steps are being used in a process of software development. If
the developers are capturing more sub-tasks then I can say a
detailed process is being followed.



ACKNOWLEDGMENTS

This work was funded in part by IBM and in part by NSERC
through the NECSIS project. Thank you to my adviser Gail.

REFERENCES

[1] A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann, “Software
developers perceptions of productivity,” SIGSOFT FSE, to appear, ACM,
2014.

[2] G. Mark, Y. Wang, and M. Niiya, “Stress and multitasking in everyday
college life: an empirical study of online activity,” in Proceedings of the
32nd annual ACM conference on Human factors in computing systems.
ACM, 2014, pp. 41–50, difficulty in working late night and stress to
developer.Describes different tasks Social media, email, web, Facebook,
academic on stress.

[3] G. Mark, V. M. Gonzalez, and J. Harris, “No task left behind? examining
the nature of fragmented work,” in in: Proceedings of ACM CHI 2005,
ACM. ACM Press, 2005, pp. 321–330, how developers cope with being
distracted while working on tasks.

[4] Y. Freund and L. Mason, “The alternating decision tree learning algo-
rithm,” in ICML, vol. 99, 1999, pp. 124–133.

[5] W. R. Gilks, Markov chain monte carlo. Wiley Online Library, 2005.
[6] S. Russell, P. Norvig, and A. Intelligence, A modern approach. Citeseer,

1995, vol. 25.
[7] M. S. Bernstein, G. Little, R. C. Miller, B. Hartmann, M. S. Ackerman,

D. R. Karger, D. Crowell, and K. Panovich, “Soylent: A word processor
with a crowd inside,” in Proceedings of the 23Nd Annual ACM
Symposium on User Interface Software and Technology, ser. UIST ’10.
New York, NY, USA: ACM, 2010, pp. 313–322. [Online]. Available:
http://doi.acm.org/10.1145/1866029.1866078

[8] A. Kittur, B. Smus, S. Khamkar, and R. E. Kraut, “Crowdforge:
Crowdsourcing complex work,” in Proceedings of the 24th Annual
ACM Symposium on User Interface Software and Technology, ser.
UIST ’11. New York, NY, USA: ACM, 2011, pp. 43–52. [Online].
Available: http://doi.acm.org/10.1145/2047196.2047202

[9] T. D. LaToza, W. B. Towne, C. M. Adriano, and A. van der
Hoek, “Microtask programming: Building software with a crowd,”
in Proceedings of the 27th Annual ACM Symposium on User
Interface Software and Technology, ser. UIST ’14. New York,
NY, USA: ACM, 2014, pp. 43–54. [Online]. Available: http:
//doi.acm.org/10.1145/2642918.2647349

[10] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj,
and T. Zimmermann, “What makes a good bug report?” in
Proceedings of the 16th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. SIGSOFT ’08/FSE-16.
New York, NY, USA: ACM, 2008, pp. 308–318. [Online]. Available:
http://doi.acm.org/10.1145/1453101.1453146

[11] S. Scerri, G. Gossen, B. Davis, and S. Handschuh, “Classifying action
items for semantic email.” in In Proceedings of the 7th International
Conference of Language Resources and Evaluation, 2010, pp. 3324–
3330.

[12] R. Mizoguchi, J. Vanwelkenhuysen, and M. Ikeda, “Task ontology for
reuse of problem solving knowledge,” Towards Very Large Knowledge
Bases: Knowledge Building & Knowledge Sharing, pp. 46–59, 1995.

[13] A. J. Ko, B. A. Myers, and D. H. Chau, “A linguistic analysis of how
people describe software problems,” in Visual Languages and Human-
Centric Computing, 2006. VL/HCC 2006. IEEE Symposium on. IEEE,
Sept 2006, pp. 127–134.

[14] B. Shneiderman, “Promoting universal usability with multi-layer in-
terface design,” in ACM SIGCAPH Computers and the Physically
Handicapped, no. 73-74. ACM, 2003, pp. 1–8.

[15] S. Greenberg, The computer user as toolsmith: The use, reuse and
organization of computer-based tools. Cambridge University Press,
1993.

[16] J. Mitchell and B. Shneiderman, “Dynamic versus static menus: an
exploratory comparison,” ACM SIGCHI Bulletin, vol. 20, no. 4, pp. 33–
37, 1989.


