Tutorial Week 3

- 1. Prove b using a formal propositional logic proof given the five numbered premises below:
- (a) $(\sim p \lor q) \to p$ (b) $\sim r \rightarrow \sim p$ (c) $\sim (r \wedge \sim a)$ (d) $(\sim a \lor b)$ (e) $(q \lor s) \to t$ 6. $\sim (\sim p \lor \sim q) \lor p$ by 1 and Implication Equiv. 7. $(p \land \sim q) \lor p$ by 6 and De Morgan's Solution 9. pby 7 absorption by 2, 8 and modus tollens 10. $\sim r \lor a$) by 3 and De Morgan's 11. a by 9, 10 and elimitation 12. *b* by 4, 11 and elimitation
 - 2. An elementary school teacher with amazing (and bizarre) powers of observation noticed the following facts, while his students were having lunch:
 - Paul and Ursula did not both eat sandwiches.
 - If Samuel forgot to bring his lunch, then either Paul ate a sandwich, or Quentin did not eat an orange (or both).
 - Ursula ate a sandwich.
 - If Trish forgot to eat her banana and Paul did not eat a sandwich, then Samuel forgot to bring his lunch.
 - If Paul did not eat a sandwich, then Quentin ate an orange.

The teacher thinks that Trish did not forget to eat her banana, but he is not certain.

- a) Name each simple proposition above, e.g.: t: Trish forgot to eat her banana.
 - p: Paul ate a sandwich for lunch.
 - Ursula ate a sandwich for lunch. u:
- Solution: Let:
- s: Samuel forgot to bring his lunch.
 - q: Samuel forgot to bring his lunch.
 - t: Trish forgot to eat her banana.
 - b) Rewrite the bulleted statements using propositional logic and your propositions from the previous part.
- 1. $\sim (p \wedge u)$ 2. $s \to (p \lor \sim q)$ Solution: 3. u4. $(t \land \sim p) \rightarrow s$
- - 5. $\sim p \rightarrow q$
 - c) Using your statements in the previous part as premises, prove that Trish did not forget to eat her banana. Be sure to list and number your steps and to give a justification for each step, citing the previous step(s) it depends on.

6.	$\sim p \lor \sim u$	by 1 and De Morgan's
7.	$\sim p$	by $3, 6$ and eliminations
8.	q	by $5, 7$ and modus ponens
9.	$\sim p \wedge q$	by 7, 8 and conjunction
10.	${\sim}(p \vee {\sim} q)$	by 9 and De Morgan's
11.	$\sim s$	by 2, 10 and modus tollens
12.	$\sim (t \wedge \sim p)$	by 4, 11 and modus tollens
13.	$\sim t \lor p$	by 4, 12 and De Morgan's
14.	$\sim t$	by $7, 12$ and elimination

Extra Practice:

Sussanna Epp 4th edition: 2.3, #37, 39, 41, 43 (Solutions are at the back of the textbook)