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Abstract. In this paper, we investigate model-driven engineering, re-
porting on a exploratory case-study conducted at a large automotive
company. The study consisted of interviews with 20 engineers and man-
agers working in different roles. We found that, in the context of a large
organization, contextual forces dominate the cognitive issues of using
model-driven technology. The four forces we identified that are likely in-
dependent of the particular abstractions chosen as the basis of software
development are the need for diffing in software product lines, the needs
for problem-specific languages and types, the need for live modeling in ex-
ploratory invention, and the need for point-to-point traceability between
artifacts. We also identified triggers of accidental complexity, which we
refer to as points of friction introduced by languages and tools. Examples
of the friction points identified are insufficient support for model diffing,
for point-to-point traceability, and for model changes at runtime.

1 Introduction

Model-driven engineering (MDE) is the primary use of, often visual, models for
software engineering. Although technical approaches of model-driven engineer-
ing are well-documented, there is a paucity of information about how humans
interact with and adapt to the technology.

In this paper, we investigate the human aspects, reporting on an exploratory
qualitative study conducted at General Motors!, a large automotive company
who makes extensive use of model-driven engineering. Our study involved inter-
views with 20 managers and engineers. These interviews took an individual-out
perspective, that is from the perspective of engineers to their context, focusing
on how an individual is applying and grappling with model-driven technology to
complete assigned goals. We analyzed the interviews to identify triggers of com-
plexity that may arise when working with software models and how those triggers
compare to those found in more traditional forms of source-based development.

1 Note to the reviewers: Another General Motors study by Aranda et.al. is also under
submission to Models 2012 [1]. While they studied the same industrial site, including
on overlap of 10 participants, our work and their work are separate bodies of work
and do not overlap. Please refer to Section 6 for a discussion of their work.



We look at triggers of complexity in terms of forces and points of friction. The
forces are likely independent of the particular abstractions chosen as the basis
of software development and thus should be considered in the design of any
new abstractions. Our notion of forces is similar to Brooks’s notion of essential
complexity from his “No Silver Bullet” essay [2], they transcend the modeling
technologies used. Related to each force we also identified points of friction,
which are akin to Brooks’s notion of accidental complexity, namely complexity
introduced by languages and tools.

Through our study, we identified four forces and five points of friction that
affect the use of model-driven engineering at the industrial site we studied, which
may provide insight into model-driven engineering in general. They are as follows:

— Teams are typically working on multiple versions of the same software model
(force), yet engineers lack proper tooling to identify and share diffs (friction).
Domain experts use a rich set of visual and formal languages to invent novel
algorithms (force), yet they lack tool support to define their own little visual
languages (friction) or pluggable ad-hoc type systems (friction).

— Inventing novel algorithms for vehicle control is an exploratory activity
(force), while the needs of early prototyping are well addressed by in-silico
simulations, testing on actual vehicles, which occurs later in the process,
suffers from lacking tool support for model changes at runtime (friction).

— Requirements documents and software models need be kept consistent across
development iterations (force), yet engineers lack proper tooling to track
point-to-point correspondences between corresponding artifacts (friction).

We believe that the forces and frictions we have identified through this em-
pirical study can help software engineering researchers understand the context in
which model-driven software engineering occurs in practice and that the friction
points we identified can influence new modeling languages and tools. The specific
results of this study can also help those adopting model-driven engineering to
understand cognitive issues that may impact the use of MDE.

This paper makes four contributions:

— it introduces the notion of forces and points of friction in tooling to describe
the impact of technical issues in the use of model-driven engineering,

— it identifies and presents four forces that may significantly impact the use of
model-driven engineering,

— it identifies and presents five points of friction in existing language and tool
support for model-driven engineering,

— it provides points of comparison with source code development to help tease
apart essential and accidental complexity.

The remainder of this paper is structured as follows. Section 2 discusses
methodology of our field study, Section 3 presents the software development
process at the organization we studied, Section 4 presents the findings of our
study, enumerated as contextual forces and points of frictions, Section 5 discusses
our findings in the general context of model-based design, Section 6 presents
related work, and Section 7 concludes with concluding remarks.



2 Methodology

To enable the gathering of detailed, rich and contextual information about
model-driven engineering, we chose a qualitative study approach. We visited
the industry of interest (General Motors) on two separate occasions, collecting
data constructed through semi-structured in-depth interviewing. We interviewed
12 engineers and 8 managers. The engineers selected for interviews were sampled
from several roles in the software development process. Overall, the engineers we
interviewed came from four different teams from different company departments.
Each interview was 90-120 minutes long, recorded on tape and transcribed for
encoding by one of the authors of this paper.

In a first visit, we interviewed 10 participants from both management and
technical roles to familiarize ourselves with the software process used in the
automotive industry. Based on what we learned from the first interviews, in our
second visit, we interviewed an additional 10 participants, all of them working
with software models but in different roles. The interviews were semi-structured,
following an exploratory case-study approach where open ended questions are
asked in order to identify research hypothesis for future studies [3]. We asked
participants to describe their work, how their work fits into the process of the
organization, with whom they interact in a weekly based, and which artifacts are
the input and which are the output of their work. We also asked to see current
or recent examples of artifacts on which they were working.

We transcribed the 12 interviews with engineers (4 from the first visit and
8 from the second visit). We encoded the transcripts and from this encoding,
we distilled the contextual forces and points of friction presented in this paper.
We encoded the interviews by tagging sentences with hashtags as if they were
tweets. We then used a series of tag clouds to identify patterns in the data,
merging and splitting tags as we saw need. We did two passes over the tags, a
first one to identify all forces and frictions that shape the work of the participants,
and a second pass to identify forces and frictions that might provide the basis
for general hypotheses on model-driven engineering, ruling out those that are
specific to the organization under study.

The data presented in this paper is largely from the in-depth interviews with
12 engineers. These engineers worked in the following roles: 2 domain experts, 7
software modelers, and 3 testing engineers. The participants had an average of
12.5+8 years of professional experience with software engineering and an average
of 4.5 + 4 years of professional experience with modeling; their backgrounds
were electronic engineering (9 mentions), mechanical engineering (4 mentions),
computer engineering (3 mentions), and software engineering (1 mention). There
are more than 12 mentions as some engineers had two degrees.

Threats to Validity: We selected all participants from the same organization,
whose common context and corporate culture may bias the results. We were
fortunate however to interview participants from four teams and a wide vari-
ety of roles, providing us with multiple views on the cognitive issues of working
with modeling technology. Although a study at one organization is not sufficient
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Fig. 1. Software development process: the doodle shows all stages of an iterative six
week release. From left to right the stages of the process are: REQ) requirements col-
lection, ALGO) algorithm design, MODEL) in-silico simulations; SWENG) software
model development; CODEGEN) code-generation; UNIT) unit testing; INTGN) inte-
gration on embedded chips; READY) readiness testing; REGRES) regression testing;
REL) internal release; CAL) calibration on actual vehicles.
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to make broad generalizations, this initial data can provide at least one prac-
tical reference point of context that is otherwise often absent in language and
tool design. This practical reference point can provide a basis for more specific
hypotheses to study in future empirical work in this area.

3 Modeling at General Motors

To enable interpretation of our qualitative study results, we provide an overview
of the software development process at General Motors. We begin by describ-
ing the overall software development process used, followed by a more in-depth
description of the various roles involved with software development and the ar-
tifacts produced and consumed during the process.

3.1 Process Overview

Figure 1 shows the software development process commonly used in the auto-
motive industry. While the figure depicts a sequential flow from requirements
to deployed software on the vehicle, the actual process happens in iterative re-
leases of six weeks with different stages of the process running in parallel on
subsequent releases. Development begins with requirements collection, which
typically happens outside the software development team (REQ in Figure 1).
The requirements are consumed by domain experts of the team who perform
algorithm design (ALGO), which includes running tests of developed models
on in-silico simulated vehicles. Software modelers consume developed algorithms
(either requirements or model patch) to produce software models from which
code can be generated in an automated step (CODEGEN); code generation is
100% automated, a special team of meta-modelers maintains the rules used for
code generation. Test engineers use the results of algorithm design and generated
code to perform unit tests; these engineer work primarily with source code. Inte-
gration engineers take care of integrating produced software to embedded chips.
Test engineers take the results and perform readiness (READY) and regression
tests (REGRESS). Every six weeks, teams downstream in the process receive
new software that is calibrated on the car (CAL), this step involves calibrating



the parameters of the typically generic features developed in the software to a
specific car model.

Each team following this process typically owns a single feature and the
models that describe that feature. The models for a single feature are reused for
different versions (world region, national legislation, car model and year) of a
particular car. As described above, special teams do exist that provide the other
teams with infrastructure and code-generation rules.

3.2 Roles

A software development team responsible for a feature consists of about a dozen
people working in different roles and possibly different countries. Through our
interviews we learned about four different roles.

Domain Experts are responsible for maintaining requirements documenta-
tion and inventing novel algorithms. In the former responsibility, domain experts
work more distinctly from software modelers. In the latter responsibility, domain
experts work closely with software modelers, including drafting changes to mod-
els on which the software modelers work. The algorithms that the domain experts
are designing are not so much computational algorithms but rather involve the
physics of a vehicle. Most domain experts thus have a strong background in elec-
trical or mechanical engineering, but typically no formal education in software
engineering.

Software Engineers implement and maintain models as specified by do-
main experts. Software modelers are responsible for three to four models and
are in close collaboration with the domain experts who own the corresponding
requirements documentation. Software modelers use the MatLab Simulink? or
IBM Rhapsody?® tools; we describe more about these tools in the next section.
When the models compile, they are passed on to integration engineers for inte-
gration into a release. Most software modelers have a background in mechanical
or electrical engineers, some have a minor in computer or software engineering
but this the the exception rather than a rule.

Test Engineers perform delta and regression testing of releases and are re-
sponsible for root cause analysis of incoming anomaly report (i.e., bug reports).
Test engineers typically work with generated sources rather than models. Test
engineers are exposed to all artifacts in the process and tend to have the broad-
est knowledge of a team’s feature. New hires are often first assigned a test en-
gineering role before moving on to a software engineering role. The professional
background of test engineers is the same as for software modelers.

Meta-modelers belong to a special team that owns and maintains the rules
used to automatically generate source code from the software models. These
experts also publish modeling guidelines and naming conventions. Even though
not formally established by the process, software modelers are often in close
contact with code generation experts, providing them with feedback and getting
help when they struggle with code-generation issues.

2 http://www.mathworks.com/products/simulink
3 http://www.ibm.com/software/awdtools/rhapsody
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Fig. 2. Sketch of a Simulink model: from left to right we see model layers of increasing
nesting level, starting with the entry function down to implementation logic.

3.3 Artifacts
Requirements and software models are the main representations used in the
software development process. We describe these two artifact types and highlight
four kind of secondary artifact types that are relevant to our results.

Requirements Documents are specifing the features owned by a team.
These documents are maintained by the domain experts. The requirements doc-
uments that we saw are loosely structured MS Word documents, typically con-
taining a mixture of natural language text, pseudo-code and figures. Figures
within these documents often use problem-specific visual languages and are cre-
ated manually. In maintenance teams, requirements documents are changed first
and drive subsequent changes to software models. In innovative teams, domain
experts explore the solution space by drafting changes to the software models
themselves and requirements documents are updated once the algorithms stabi-
lize.

Software Models are created by software modelers with either Matlab
Simulink or IBM Rational Rhapsody. While the two are interchangeable in the
process and used by the same roles, they are technically quite different:

— Matlab Simulink is a model-based design tool focused on the design of con-
trol flows. Simulink models are written in a low-level visual language which
resembles the visuals of circuit diagrams. Code generation with Simulink is
automated but cannot be customized.

— IBM Rhapsody is a model-driven engineering tool. The structure of Rhap-
sody models is specified using UML class diagrams, engineers can choose
between visual and non-visual representations, and behavior is specified us-
ing either blocks of C-code or state machine diagrams. Code generation with
Rhapsody is automated and highly customizable.

Figure 2 shows a sketch of a typical Simulink model that implements part of a
feature. A typical model consists of about 100,000 blocks and a dozen nested lay-
ers. From left to right, we see model layers of increasing nesting level: 1) the top
most layer of the model, which is structured according to the modeling guidelines
with “the function” on top and other diagnostics function on the bottom; 2) the
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4.2 Need for Visual DSLs e o o

4.2 Hungarian notation as types o o ° o
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Table 1. List of observed frictions by participant numbers. Roles are X) domain expert,
S) software modeler, and T) test engineer; an asterisk indicates that their team focused
on inventing novel algorithms rather than on maintenance of stable technology.

second layer, zooming into the function, showing 96 input signals and 45 output
signals; 3) One of many layers that serves to convert the unit and magnitude of
input signals, typically each of those layers corresponds to a paragraph in the
requirements document; 4) about a dozen layers deeper, program logic such as
conditionals and loops are laid-out as a graphical circuit with each major block
corresponding to a paragraph in the requirements document; 5) further down
inside one of the blocks with program logic, basic arithmetic operations, such
as addition and division of numbers, are modeled using the visual language of
circuits rather than using mathematical notation.

Auto-Generated Source Code is often defined as a secondary artifact
type; however, this code serves as the primary artifacts used by test engineers
and sometimes, for diffing and change tracking, by software modelers.

Code-Generation Rules are used for automated code generation. These
rules are maintained by a special team of meta-modelers.

Model Patches are used by domain experts when they invent novel algo-
rithms to exchange their model prototypes with the software modelers. These
patches are not a formally defined part of the software development process
and thus are ad-hoc artifacts. Model patches take many forms, such as Excel
spreadsheets with annotated screenshots of a model.

Tests ensure that software models are implementing a feature as specified
in the requirements documents. Within a team all tests are owned by the test
engineers. Many tests require manual manipulation on a workbench, that is a
partial vehicle in the testing lab, while other tests are fully automated and run
in a in-silico simulation of the vehicle and its environment.

4 Results — Forces and Frictions

From our analysis of the interview data, we identified four forces and five points
of friction. Using Brooks terminology, forces are indicators of innate complexity
while frictions introduce accidental complexity [2].

Table 1 documents the observed frictions by participant number. As we dis-
tilled the forces and frictions from the encoded interview data, we tried to iden-
tify those triggers of complexity that are not specific to the organization that



we studied. We focused on those that are more general and thus might form the
basis for more specific hypotheses in future research work.

4.1 Force: Need for Diffing in Software Product Lines

Engineers in a team are often working on different versions of the same artifact.
Thus engineers need to identify the changes in a model and, possibly, share
those changes with engineers in other roles. Working with multiple versions is a
result of business needs and thus a contextual force, independent of the primary
abstraction used for software representation, i.e., models or code.

Internal releases happen every six weeks, however the length of a full iteration
might be longer. It is common for multiple engineers, in the same team, to
work on different releases of the same model. In particular, we learned that
domain experts typically use previous releases to prototype the changes that are
supposed to drive future releases. Thus domain experts need to exchange those
prototypes as model patches with the software modelers. Also, test engineers
reported that they need to learn about the most recent changes to a model
under test.

Friction: Insufficient Support for Model Diffing (12/12 interviews). En-
gineers use version control to keep track of different versions and revisions of
the same model. However, they experience friction when merging and handling
comparison of these versions.

Although there are commercially available third-party tools that offer diff-
ing capabilities for modeling, the engineers we interviewed described that they
are limited in their scalability and in their usability. Engineers described the
experience of using these tools as “going blind” (P1g) and leading them to make
mistakes. Engineers seem to prefer linear reading path of textual diffing in order
to make it easier for them to “not miss a change” (Py). Model-based approaches
which highlights the changes in the spatial and possibly nested visual represen-
tation to not provide that kind of linear reading path.

We learned about several different strategies that engineers use to work
around the lack of model diffing:

— When coming back to their own work, or keeping track of changes for code
reviews, software modelers adopted a habit of documenting all model changes
with comments. One example is the unique identifier of the current work
ticket is used as a marker, such that a search for this marker returns all
model changes. This approach is the same as the approach adopted to handle
missing point-to-point traceability, which is discussed in Subsection 4.4.

— When comparing versions for regression testing and root cause analysis, test
engineers use textual diffing tools on the auto-generated code, which puts
them at risk to misinterpret the modeler’s intention of a feature.

— When inventing algorithms and prototyping on their own branch of a model,
domain experts often use screenshots to communicate their changes back to
the software modeler who owns the model. They take screenshots where
the changes before and after, marked them in red, and share them in a



PowerPoint slide deck as an ad-hoc model patch which is either emailed or
attached to a change ticket.

The engineering needs for model diffing are similar to those found in tradi-
tional source code development. We did not hear in the interviews that an in-
creased level of abstraction in representation (that is modeling rather than code)
leads to an increased need for semantic diffing. As reported by the engineers who
are falling back to textual diffing of auto-generated source, syntactic diffing is
in their words “more than good enough” (P;) for most use cases. In particular
when diffing is needed to track the changes from one version to another.

4.2 Force: Need for Problem-Specific Expressibility

Domain experts use a rich set of visual and formal languages to invent and design
their algorithms. The requirements documents that we encountered in our study
made use of a rich and diverse visual language to describe the desired behavior
of algorithms. Some of these languages are by virtue of the domain expert’s
training as mechanical or electrical engineers, whereas others of those languages
are a result of the domain expert’s struggle to find the best way to explore the
problem and solution spaces of their inventions.

It is our conjecture that the current modeling tools, while providing organi-
zation with domain-specific abstractions, do not empower end-users, that is do-
main experts, and software modelers, to define their own problem-specific “little
languages” [4]. We highlight two major points of friction related to insufficient
expressibility that we identifed: visual languages and ad-hoc types.

Friction: Lack of Problem-Specific Visual “Little Languages” (3/12
interviews). Domain experts often need to prototype their innovations in a soft-
ware model, yet the visual language of modeling tools limits their ability to
express themselves. The notations that domain expert use to talk and think
about their algorithms are those found in mechanical and electrical engineering.

For example, a domain expert might be prototyping a novel clutch control.
In the requirements documents the domain experts might describe the behavior
of two dependent variables as a graph with two signals in time, quote: “there
are pictures in here of how I want the data to behave, and when I am done I
want to see this [on the oscilloscope] on a car.” (Pyy) Yet, when the domain
expert uses software models to explore the solution space of the novel algorithm,
he has to constantly translate back and forth between his mental model and
the programing constructs. The domain expert cannot just draw a graph of the
expected behavior and have appropriate code generated.

Friction: Hungarian Notation Used as Ad-hoc Types (4/12 interviews).
We also found that some teams used Hungarian notation to denote physical
unit and magnitude of signal names in the Simulink models. Hungarian notation
was popular in software engineering before the introduction of type systems. It
is a naming convention where variable names were prefixed with abbreviations
indicating the type of a variable, e.g., szName for a variable storing a username
as zero-terminated string.



The software engineers described to us how they use Hungarian notation to
denote the physical type and magnitude of signals in their models. For exam-
ple, they use a prefix to indicate that a signal is temperature in degree Celsius
and that it is a fixed-point number with base 10 and radix 2. The printed list
of all prefixes used in the system fills four pages and they keep them close to
the keyboard, to have them always ready when working with the models. En-
gineers use these prefixes to make sure that values are properly converted and
normalized before use. However, these coding conventions are only manually, not
automatically, verified.

Support for problem-specific type systems in modeling technology, as for
example pluggable types [5], might alleviate this point of friction.

4.3 Force: Inventing Novel Algorithms as an Exploratory Activity
Developing algorithms for vehicle control is an exploratory activity. While the
needs of early prototyping are well addressed by in-silico simulations, this is not
the case for later stages where novel algorithms are tested on actual vehicles.
As engineers are testing software “on the car,” that during a test drive on the
proving grounds, they often encounter the need for updates to the software
system. This need has been reported by domain experts and software modelers
in those teams who work on inventing novel algorithms.

Friction: Long Build-Cycles Prevent Live Modeling (4/12 interviews).
The build process of the model-driven tool chain may take up to several hours.
As a result, when working “on the car” as soon as the need for a software
change arises the test drive has to be interrupted and rescheduled for another
day. Engineers reported that build times with an older C-based tool chain had
been in the half-hour range and thus within a tolerance interval where it had
been possible to continue the test drive on the same day. Ideally though, when
working ”on the car” engineers should be able to apply model changes at runtime
and continue their test drive instantly.

This point of friction might be alleviated by an abstraction which does away
with compile-build-deploy cycles, such that changes to the software can be ap-
plied at runtime. Technologies that allowed a form of hot-swapping of quickly-
generated code from models might be a means to address exploratory adaptation
of software at runtime. Such technologies would not be limited by the processing
power of target hardware (embedded control units) since while working “on the
car” those chips are stubbed by more powerful hardware anyway.

4.4 Force: Need for Traceability in Incremental Release Cycles
A major theme that appeared throughout the interviews was the need for trace-
ability between specification documents and software artifacts. Requirements
documents, software models and test are all essentially different representations
of the same information, information which need be kept consistent as those
artifacts are independently updated with each release cycle.

While the content management system used in the organization provides en-
gineers with document-to-document traceability, for many tasks point-to-point



traceability is required. Engineers need to be able to quickly navigate from a
visual block in the software model to the corresponding paragraph in the re-
quirements document, or the corresponding test, or even the auto-generated
sources, and vice versa. While this need is essentially representation indepen-
dent, the introduction of software models as an additional layer of abstraction
exponentially increases the traceability needs of engineers.

Friction: Lack of Point-to-Point Traceability (12/12 interviews). Cur-
rently engineers establish traceability by relying on naming conventions. All
interviewed engineers mentioned the use of markers as a work-around for miss-
ing point-to-point traceability. We found that engineers have adopted a habit of
using change ticket identifiers as markers to establish point-to-point traceability
through manual search. This is similar to one of the habits adopted to tracking
changes between model versions as discussed in Subsection 4.1.

While this workaround establishes limited point-to-point traceability, the ap-
proach is inefficient and fragile. If engineers forget to mark one of the documents
with the unique identifier, traceability is broken. In addition, while names con-
tained in software artifacts are verified by code generation or compilation, names
contained in specification documents often contain spelling errors or use old
names that predate a renaming refactoring. Spelling differences make it hard, if
not impossible, to navigate these traceability links using keyword search.

5 Discussion

In this section, we put our observation in the context of model-driven engineering
and provide points of comparison with source code development to help tear
apart essential and accidental complexity.

5.1 On the Terminology of “Model”

In our interviews, we found that the terms “model” and “modeling” were used
ambiguously. Engineers generally did not refer to their work as “modeling” but
used the terms “auto-coding” and “hand-coding.” These terms were used to dif-
ferentiate between working with tools which include a step of code generation
versus writing C-level code manually. Engineers used the term “model” ambigu-
ously to refer to software models, as well as the plant models used for the in-silico
simulation of vehicles. Engineers also used the term “simulation” ambiguously
to refer to running the in-silico simulation of the plant models, as well as to
running software models from within the modeling tools as opposed to running
the auto-generated sources.

We believe the terminology we observed is mixing model-based design (MBD,
an approach in system engineering for disentangling the development of control
software and corresponding vehicles, using in-silico modeling while vehicles are
not yet available) and model-driven engineering (MDE). The ambiguous use of
terminology can be explained if we look at model-driven engineering as a division
of labour between between a few specialized meta-modelers and many modelers.
After all, the software modelers do not have to understand the full complexity
of modeling, this is up to the specialized meta-modelers. However, we found



that points of friction in modeling tools, in particular the insufficient support of
model diffing, may break the abstraction and nevertheless expose engineers to
these complexities.

5.2 On Visual Models and Linear Reading Paths

During our interviews we learned about heated controversy around modeling
among engineers, and whether hand-coding is superior to code generation. While
some of the critique was targeted at the long build cycles of the modeling tool-
chain (see Subsection 4.3), much of it was concerned with the visual representa-
tion of models and its lack of abstraction such as scopes and subroutines.

Without the linear order of text lines, which is superimposed upon source
code, visual programming as found in models has no linear reading path and
can possibly stretch in all directions, left, right, top, bottom, and even down
to the next nesting level. While modeling guidelines try to alleviate this by
imposing a flow from top-left to bottom-right, engineers struggle with reading
visual models as to make sure they are not missing a part of their work to-be-
done. Engineers expressed difficulties with reading order both when navigating
(see Subsection 4.4) and changing (see Subsection 4.1) models.

For example, when doing readiness testing, all changes in the current release
need be covered with tests and no single change must be missed. One participant
gave an account of a case where they printed a whole model, put all layers up
on a huge wall and worked together on the wall-sized printout to make sure they
“can walk through the complete model and don’t miss a block” (Py).

Another engineer showed us how she uses a numbering scheme to reduce the
spatial complexity of her visual models down to linear reading path, quote: “this
is just [a] little help for myself, we don’t have to do this, I add numbers to each
blocks, like 7 and 8 and 9, and then 8.1 and 8.2 and deeper down 8.3.1.6, so
I can read the model from top to bottom.” (P;2) The same motivation, that is
introducing linear reading paths, was brought forward by engineers when they
described their practices of sharing model patches as PowerPoint decks and or
when motivating their preference of textual diffing tools.

Related to this point, when offered an alternative to visual programming
engineers seem to prefer non-visual representations. The Rhapsody tool offers
engineers an alternative to visual programming which is editing the class dia-
grams through a tree view and property dialogs. Engineers seemed to prefer this
option over visual modeling of UML class diagrams and they even reported that,
to their best knowledge, the visual representation of class diagrams is not used
by other engineers either.

5.3 On Problem-Specific Needs of Modelers
While model-driven engineering provides meta-modelers with powerful abstrac-
tion to capture domain-specific architectures, it does not provide similarly em-
power its end-users, i.e., domain experts and software modelers, to express their
own problem-specific languages and type systems.

In general, the visual language of domain experts seems to be much richer
and broader than the languages provided by modeling tools. In particular, there



seems to be a need for problem-specific “little languages” that can be defined
on the fly. Currently, domain experts are unable to create new abstractions that
would allow them to achieve productivity gains in algorithm innovation. Neither
Simulink, which is largely a visual representation of common coding patterns, nor
Rhapsody, by virtual of its limitation to the UML standard’s visual languages,
offer the ability to define the kind of rich visual languages that we learned about
from the domain expert’s requirements documents.

Visual programming in Simulink traces it’s ancestry to circuit diagrams and
aims at expressing low-level programming constructs such as conditionals and
mathematical operators with the visual language of circuit diagrams. Mathemat-
ical operations and conditionals are each represented as single blocks. While this
language is visual it does not it seem be an actual abstraction from source code.
Even worse, as we learned through our interviews the level of abstraction seems
to be lower than high-level source code. For example, engineers reported that
they struggle to introduce abstraction such as nested scopes of variable visibility,
enumerators, or refactoring duplicated code into a new method.

Compared to source-based high-level languages, we found that, while model-
driven engineering increases the abstraction level of program compilation, it does
achieve the same increase in abstraction for program representation. Model-
driven engineering provides meta-modelers with the power to build a domain-
specific global architecture by customizing the program compilation through
code-generation rules. Yet, the “end-users” of model-driven engineering, that is
domain experts and software modelers, are left without the power to create their
own APIs to address local problem-specific needs in an formal manner.

6 Related Work

Although model-driven engineering claims many potential benefits it has largely
developed without the support of empirical data. There are few reports of empir-
ical evaluations of modelling in the literature. Even fewer reports discuss human
factors and cognitive issues of model-driven engineering, since most empirical
studies has been focused technological aspect of MDE or UML in particular.

In parallel to our study, Aranda et.al. investigated the organizational con-
sequences of adopting MDE at the same organization [1]. They interviewed the
same participants as our second visit, but while we investigated cognitive is-
sues of technology, driven largely from an individual’s perspective, they looked
into organizational forms, patterns, and processes of MDE adoption. They found
that switching to MDE may disrupt organizational structure, creating morale
and power problems. They conclude that the cultural and institutional infras-
tructure of MDE is underdeveloped and until MDE becomes better established,
transitioning organizations need to exert additional adoption efforts. In accor-
dance with our observations on forces and frictions at a technology level, they
found that at an organizational level communication and collaboration seem to
be as challenging under MDE as for other organizations using traditional devel-
opment approaches.

Most recently Hutchinson et.al. presented their results of a qualitative user
study, consisting of semi-structured interviews with 20 engineers in 20 different



organizations [6,7]. They identify lessons learned, in particular the importance
of complex organizational, managerial and social factors, as opposed to simple
technical factors, in the relative success, or failure, of MDE. As an example of
organizational change management the successful deployment of model driven
engineering appears to require: a progressive and iterative approach; transparent
organizational commitment and motivation; integration with existing organiza-
tional processes and a clear business focus.

Mohagheghi and Dehlen presented a study on the impact of MDE on pro-
ductivity and software quality [8]. Their methodology was a meta-analysis of the
literature, selecting 25 papers published in quality conferences and venues be-
tween 2000 and 2007. Almost all these papers were experience reports from single
projects and most of the papers present results anecdotally. Software processes
were reported as being of integral importance in successfully applying MDE,
and the importance of suitable tools was reported as of crucial importance. The
meta-study also looked for evidence that MDE improves software quality, but
the evidence was anecdotal. In conclusion, they suggested that there is a need for
more empirical studies evaluating MDE before sufficient data will be available
to prove the benefits of its use.

Forward and Lethbridge conducted a survey of 117 engineers to find practi-
tioners’ opinions and attitudes towards MDE [9]. In accordance with out find-
ings the study concludes that model-driven may benefit from features that, syn-
chronize code and models, better traceability between models and code, better
modeling capabilities and expressibility the reduce the need for external arti-
facts. Alas the survey provides little data on the participant’s context, size of
their organizations and their adoption-level of MDE. As it seems, only 32% of
the participants reported that they generate all or some code from the models.
Dobing and Parson discussed the survey to discover commonly-held perceptions
which may not hold true in practice [10]. Anda et.al. reported on disadvantages
of adopting modeling practices, such as the difficultly of integrating legacy code
and models, but found anecdotal advantages of improved traceability [11]. Afonso
et.al. wrote about a case study where developers migrate from code-centric to
model-centric practices [12].

7 Conclusion

When technologies are introduced, it is often hard to separate myth from reality.
To investigate the benefits and challenges of model-driven engineering we per-
formed a field study about the use of model-based design in a large automotive
company. We showed how, for one large organization, model-driven engineering
is to a large degree shaped by contextual forces, which seem to be independent
of the abstraction chosen to help develop the system. Through this study, which
involved interviews with 20 engineers and managers, we identified four forces and
five points of friction (as itemized in the introduction). We differentiate between
forces that are contextual and external to software modeling technologies and
as frictions, which are accidental issues caused by current tooling on software
modeling.



As we worked with the data, the contextual forces affecting individuals us-
ing modeling became clear. While architectural complexity is well hidden from
software modelers, they are still exposed to substantial innate complexity (con-
textual forces) and often even new accidental complexity (points of frictions in
modeling tools). In particular the representational abstraction of visual modeling
languages does not seem to be as broad and rich as the problem-specific visual
and formal languages of the domain experts.

We identified three concluding themes that span across many of the identified
forces and points of friction and which might be of interest for tool builder and
language designers in their future work, they are as follows:

— Engineers seem to prefer the linear reading paths of textual representations
over the spatial representation of nested visual models. Both when navigating
and changing models as well as when using model diffing. They describe their
experience as “going blind” and struggling “to not miss anything.”

— While model-driven engineering provides meta-modelers with powerful ab-
straction to capture domain-specific architectures, it does not similarly em-
power its end-users, i.e., domain experts and software modelers, to express
their own problem-specific languages and type systems.

— The needs of engineers who are inventing novel algorithms differ from those of
engineers who are working on more mature features. Invention is essentially
exploratory activity and its needs, such as instant model changes as runtime,
seem not to be well addressed by current modeling tool-chains.
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